Skip to content

Standard Model fit

The CKM matrix

\[V_{CKM}= \begin{pmatrix} (0.97431 \pm 0.00018) & (0.22517 \pm 0.00080) & (0.003721 \pm 0.000098)e^{i(-64.7 \pm 1.2)^\circ}\\ ( -0.22502 \pm 0.00078)e^{i(-179.03600 \pm 0.00085)^\circ} & (0.97344 \pm 0.00018)e^{i(-0.001862 \pm 0.000046)^\circ} & (0.04222 \pm 0.00051) \\ (0.00858 \pm 0.00010)e^{i(-22.33 \pm 0.62)^\circ} & ( -0.04127 \pm 0.00043)e^{i(-178.025 \pm 0.028)^\circ} & (0.999110 \pm 0.000018) \end{pmatrix} \]

Fit results

Predictions are obtained by removing the given constraint from the global fit.

Parameter Input value Full fit SM Prediction Pull
\(\bar{\rho}\) \(-\) \(0.1609 \pm 0.0095\) \(-\) \(-\)
\(\bar{\eta}\) \(-\) \(0.347 \pm 0.010\) \(-\) \(-\)
\(\rho\) \(-\) \(0.1653 \pm 0.0095\) \(-\) \(-\)
\(\eta\) \(-\) \(0.3559 \pm 0.0099\) \(-\) \(-\)
\(A\) \(-\) \(0.828 \pm 0.011\) \(-\) \(-\)
\(\lambda\) \(-\) \(0.22519 \pm 0.00083\) \(-\) \(-\)
\(J_{cp}\cdot10^{5}\) \(-\) \(3.102 \pm 0.080\) \(-\) \(-\)
\(\sin\theta_{12}\) \(-\) \(0.22519 \pm 0.00083\) \(-\) \(-\)
\(\sin\theta_{23}\) \(-\) \(0.04200 \pm 0.00047\) \(-\) \(-\)
\(\sin\theta_{13}\) \(-\) \(0.003715 \pm 0.000093\) \(-\) \(-\)
\(\delta [^{\circ}]\) \(-\) \(1.137 \pm 0.022\) \(-\) \(-\)
\(\|V_{ud}\|\) \(0.97433 \pm 0.00019\) \(0.97431 \pm 0.00019\) \(0.9738 \pm 0.0011\) \(0.0\)
\(\|V_{ub}\|\) \(0.00377 \pm 0.00024\) \(0.003715 \pm 0.000093\) \(0.00370 \pm 0.00011\) \(0.2\)
\(\|V_{cb}\|\) \(0.04125 \pm 0.00095\) \(0.04200 \pm 0.00044\) \(0.04222 \pm 0.00051\) \(0.6\)
\(\alpha [^{\circ}]\) \(94.9 \pm 4.7\) \(92.4 \pm 1.3\) \(92.2 \pm 1.6\) \(0.6\)
\(\beta [^{\circ}]\) \(-\) \(22.47 \pm 0.65\) \(22.46 \pm 0.68\) \(-\)
\(\sin(2\beta)\) \(0.688 \pm 0.020\) \(0.706 \pm 0.015\) \(0.736 \pm 0.028\) \(1.4\)
\(\cos(2\beta)\) \(-\) \(-\) \(0.707 \pm 0.016\) \(-\)
\(\gamma [^{\circ}]\) \(66.1 \pm 3.5\) \(65.0 \pm 1.2\) \(64.9 \pm 1.4\) \(0.3\)
\(2\beta+\gamma [^{\circ}]\) \(-\) \(-\) \(110.0 \pm 1.7\) \(-\)
\(\beta_s\) \(-\) \(-\) \(-0.0364 \pm 0.0011\) \(-\)
\(m_{c}\mathrm{ [GeV/c^{2}]}\) \(1.2900 \pm 0.0070\) \(-\) \(-\) \(-\)
\(m_{b}\mathrm{ [GeV/c^{2}]}\) \(4.196 \pm 0.014\) \(-\) \(-\) \(-\)
\(m_{t}\mathrm{ [GeV/c^{2}]}\) \(171.79 \pm 0.38\) \(-\) \(-\) \(-\)
\(\|\epsilon_{k}\|\) \(0.002228 \pm 0.000011\) \(0.002226 \pm 0.000010\) \(0.00200 \pm 0.00015\) \(0.1\)
\(\epsilon^{\prime}/\epsilon\) \(0.00166 \pm 0.00033\) \(0.00161 \pm 0.00027\) \(0.00158 \pm 0 .00045\) \(0.3\)
\(\Delta m_{s} \mathrm{[ps^{-1}]}\) \(17.741 \pm 0.020\) \(17.739 \pm 0.020\) \(17.94 \pm 0.69\) \(0.3\)
\(\Delta m_{d} \mathrm{[ps^{-1}]}\) \(0.5065 \pm 0.0019\) \(0.5065 \pm 0.0018\) \(0.519 \pm 0.023\) \(0.5\)
\(B(B\rightarrow\tau\nu)\) \(1.06 \pm 0.19\) \(0.881 \pm 0.044\) \(0.869 \pm 0.047\) \(1.0\)
\(\bar {B}(B_{s}\rightarrow ll)\cdot10^{9}\) \(3.41 \pm 0.29\) \(3.25 \pm 0.12\) \(3.47 \pm 0.14\) \(0.0\)

Global fit configurations to extract Lattice QCD parameter predictions

Parameter Input value Prediction
Removing \(\hat{B}_{k}\) from inputs
\(\hat{B}_{k}\) \(0.756 \pm 0.016\) \(0.840 \pm 0.059\)
Use only \(\hat{B}_{B_{s}}\) and \(\hat{B}_{B_{s}}/\hat{B}_{B_{d}}\)
\(f_{B_{d}}\) \(190.5 \pm 1.3\) \(190.2 \pm 7.2\)
\(f_{B_{s}}\) \(230.1 \pm 1.2\) \(229.4 \pm 7.2\)
\(\xi\) \(1.208 \pm 0.059\) \(1.204 \pm 0.027\)
Use only the ratios \(f_{B_{s}}/f_{B_{d}}\) and \(\hat{B}_{B_{s}}/\hat{B}_{B_{d}}\)
\(f_{B_{d}}\hat{B}_{d}^{1/2}\) \(214.2 \pm 5.6\) \(216.9 \pm 5.3\)
\(f_{B_{s}}\hat{B}_{s}^{1/2}\) \(260.7 \pm 6.1\) \(264.4 \pm 6.0\)
\(\xi\) \(1.208 \pm 0.051\) \(1.219 \pm 0.021\)
Use only \(\hat{B}_{K}\)
\(f_{B_{d}}\hat{B}_{d}^{1/2}\) \(210.5 \pm 3.6\) \(214.2 \pm 5.6\)
\(f_{B_{s}}\hat{B}_{s}^{1/2}\) \(259.0 \pm 3.4\) \(260.7 \pm 6.1\)
\(\xi\) \(1.230 \pm 0.023\) \(1.217 \pm 0.014\)