Tree level Fit
The CKM matrix
\[V_{CKM}= \begin{pmatrix}
(0.97428 \pm 0.00014) & (0.22532 \pm 0.00063) & (0.00375 \pm 0.00046)e^{i(-69.5 \pm 7.1)^\circ}\\
( -0.22512 \pm 0.00063)e^{i(0.0353 \pm 0.0045)^\circ} & (0.97347 \pm 0.00015)e^{i(-0.00188 \pm 0.00023)^\circ} & (0.039915 \pm 0.000015 \text{ and } 0.04092 \pm 0.00098) \\
(0.00869 \pm 0.00048 \text{ and } 0.01101 \pm 0.00050)e^{i(-23.1 \pm 2.7)^\circ} & ( -0.0398 \pm 0.0010)e^{i(1.12 \pm 0.12)^\circ} & (0.999155 \pm 0.000040)
\end{pmatrix} \]
Fit results
Predictions are obtained by removing the given constraint from the global fit.
Parameter | Input value | Full fit |
---|---|---|
\(\bar{\rho}\) | \(-\) | \(-0.136 \pm 0.051 \text{ and } 0.132 \pm 0.049\) |
\(\bar{\eta}\) | \(-\) | \(-0.367 \pm 0.050 \text{ and } 0.369 \pm 0.050\) |
\(\rho\) | \(-\) | \(0.135 \pm 0.051\) |
\(\eta\) | \(-\) | \(0.378 \pm 0.050\) |
\(A\) | \(-\) | \(0.806 \pm 0.020\) |
\(\lambda\) | \(-\) | \(0.2253 \pm 0.0006\) |
\(\alpha\ [^{\circ}]\) | \(-\) | \(86.2 \pm 7.6\) |
\(\beta\ [^{\circ}]\) | \(-\) | \(23.1 \pm 3.0\) |
\(\sin(2\beta)\) | \(-\) | \(0.726 \pm 0.071\) |
\(\gamma\ [^{\circ}]\) | \(-109.9 \pm 7.1 \text{ and } 70.1 \pm 7.1\) | \(69.4 \pm 7.1\) |