Skip to content

Standard Model Fit using only inclusive Vxb measurements

The CKM matrix

\[V_{CKM}= \begin{pmatrix} 0.97426 \pm 0.00011 & (0.22535 \pm 0.00059) & (0.00374 \pm 0.00013)e^{i(-68.4 \pm 3.5)^\circ}\\ ( -0.2252 \pm 0.00054)e^{i(0.0361 \pm 0.0010)^\circ} & (0.97339 \pm 0.00013)e^{i(-0.00193 \pm 0.00005)^\circ} & (0.04195 \pm 0.00051) \\ (0.00876 \pm 0.00019)e^{i(-22.60 \pm 0.87)^\circ} & (0.041245 \pm 0.000455)e^{i(1.084 \pm 0.041)^\circ} & (0.999115 \pm 0.000021) \end{pmatrix} \]

Fit results

Predictions are obtained by removing the given constraint from the global fit.

Parameter Input value Full fit SM Prediction
\(\bar{\rho}\) \(-\) \(0.144 \pm 0.024\) \(-\)
\(\bar{\eta}\) \(-\) \(0.358 \pm 0.021\) \(-\)
\(A\) \(-\) \(0.825 \pm 0.011\) \(-\)
\(\lambda\) \(0.2253 \pm 0.0009\) \(0.2254 \pm 0.0006\) \(-\)
\(\|V_{ub}\|\) \(0.00440 \pm 0.00031\) \(0.00374 \pm 0.00013\) \(-\)
\(\|V_{cb}\|\) \(0.04170 \pm 0.00070\) \(0.04195 \pm 0.00051\) \(-\)
\(\alpha [^{\circ}]\) \(90.9 \pm 8.0\) \(89.6 \pm 3.2\) \(86.3 \pm 3.8\)
\(\beta [^{\circ}]\) \(-\) \(22.61 \pm 0.89\) \(24.4 \pm 1.8\)
\(\sin(2\beta)\) \(0.680 \pm 0.023\) \(0.711 \pm 0.022\) \(0.754 \pm 0.042\)
\(\cos(2\beta)\) \(0.87 \pm 0.13\) \(0.705 \pm 0.022\) \(0.660 \pm 0.048\)
\(2\beta+\gamma [^{\circ}]\) \(-89 \pm 54 \text{ and } 90 \pm 54\) \(113.4 \pm 3.5\) \(-\)
\(\gamma [^{\circ}]\) \(-109.9 \pm 7.1 \text{ and } 70.1 \pm 7.1\) \(67.7 \pm 3.5\) \(-\)
\(B(B\rightarrow\tau\nu)\ 10^{-4}\) \(1.14 \pm 0.22\) \(0.889 \pm 0.078\) \(0.806 \pm 0.070\)
\(B(B_{s}\rightarrow ll)\ 10^{-9}\) \(-\) \(3.60 \pm 0.12\) \(-\)
\(B(B_{d}\rightarrow ll)\ 10^{-9}\) \(-\) \(0.1118 \pm 0.0070\) \(-\)