Standard Model Fit using only inclusive Vxb measurements
The CKM matrix
\[V_{CKM}= \begin{pmatrix}
0.97426 \pm 0.00011 & (0.22535 \pm 0.00059) & (0.00374 \pm 0.00013)e^{i(-68.4 \pm 3.5)^\circ}\\
( -0.2252 \pm 0.00054)e^{i(0.0361 \pm 0.0010)^\circ} & (0.97339 \pm 0.00013)e^{i(-0.00193 \pm 0.00005)^\circ} & (0.04195 \pm 0.00051) \\
(0.00876 \pm 0.00019)e^{i(-22.60 \pm 0.87)^\circ} & (0.041245 \pm 0.000455)e^{i(1.084 \pm 0.041)^\circ} & (0.999115 \pm 0.000021)
\end{pmatrix} \]
Fit results
Predictions are obtained by removing the given constraint from the global fit.
Parameter | Input value | Full fit | SM Prediction |
---|---|---|---|
\(\bar{\rho}\) | \(-\) | \(0.144 \pm 0.024\) | \(-\) |
\(\bar{\eta}\) | \(-\) | \(0.358 \pm 0.021\) | \(-\) |
\(A\) | \(-\) | \(0.825 \pm 0.011\) | \(-\) |
\(\lambda\) | \(0.2253 \pm 0.0009\) | \(0.2254 \pm 0.0006\) | \(-\) |
\(\|V_{ub}\|\) | \(0.00440 \pm 0.00031\) | \(0.00374 \pm 0.00013\) | \(-\) |
\(\|V_{cb}\|\) | \(0.04170 \pm 0.00070\) | \(0.04195 \pm 0.00051\) | \(-\) |
\(\alpha [^{\circ}]\) | \(90.9 \pm 8.0\) | \(89.6 \pm 3.2\) | \(86.3 \pm 3.8\) |
\(\beta [^{\circ}]\) | \(-\) | \(22.61 \pm 0.89\) | \(24.4 \pm 1.8\) |
\(\sin(2\beta)\) | \(0.680 \pm 0.023\) | \(0.711 \pm 0.022\) | \(0.754 \pm 0.042\) |
\(\cos(2\beta)\) | \(0.87 \pm 0.13\) | \(0.705 \pm 0.022\) | \(0.660 \pm 0.048\) |
\(2\beta+\gamma [^{\circ}]\) | \(-89 \pm 54 \text{ and } 90 \pm 54\) | \(113.4 \pm 3.5\) | \(-\) |
\(\gamma [^{\circ}]\) | \(-109.9 \pm 7.1 \text{ and } 70.1 \pm 7.1\) | \(67.7 \pm 3.5\) | \(-\) |
\(B(B\rightarrow\tau\nu)\ 10^{-4}\) | \(1.14 \pm 0.22\) | \(0.889 \pm 0.078\) | \(0.806 \pm 0.070\) |
\(B(B_{s}\rightarrow ll)\ 10^{-9}\) | \(-\) | \(3.60 \pm 0.12\) | \(-\) |
\(B(B_{d}\rightarrow ll)\ 10^{-9}\) | \(-\) | \(0.1118 \pm 0.0070\) | \(-\) |