Skip to content

Standard Model Fit using only inclusive Vxb measurements

The CKM matrix

\[V_{CKM}= \begin{pmatrix} (0.97426 \pm 0.00014) & (0.22545 \pm 0.00059) & (0.00357 \pm 0.00011)e^{i(-72.6 \pm 3.1)^\circ}\\ ( -0.22525 \pm 0.00059)e^{i(0.03476 \pm 0.00096)^\circ} & (0.97342 \pm 0.00013)e^{i(-0.00186 \pm 0.00005)^\circ} & (0.04121 \pm 0.0005) \\ (0.00886 \pm 0.00018)e^{i(-21.93 \pm 0.73)^\circ} & ( -0.04042 \pm 0.0005)e^{i(1.08 \pm 0.033)^\circ} & (0.999142 \pm 0.000018) \end{pmatrix} \]

Fit results

Predictions are obtained by removing the given constraint from the global fit.

Parameter Input value Full fit SM Prediction
\(\bar{\rho}\) \(-\) \(0.113 \pm 0.021\) \(-\)
\(\bar{\eta}\) \(-\) \(0.358 \pm 0.021\) \(-\)
\(A\) \(-\) \(0.811 \pm 0.011\) \(-\)
\(\lambda\) \(0.2253 \pm 0.0009\) \(0.22535 \pm 0.00065\) \(-\)
\(\|V_{ub}\|\) \(0.00342 \pm 0.00022\) \(0.00357 \pm 0.00011\) \(-\)
\(\|V_{cb}\|\) \(0.03955 \pm 0.00088\) \(0.04121 \pm 0.0005\) \(-\)
\(\alpha [^{\circ}]\) \(90.9 \pm 8.0\) \(85.6 \pm 2.9\) \(86.3 \pm 3.8\)
\(\beta [^{\circ}]\) \(-\) \(21.91 \pm 0.75\) \(24.4 \pm 1.8\)
\(\sin(2\beta)\) \(0.68 \pm 0.023\) \(0.693 \pm 0.019\) \(0.754 \pm 0.042\)
\(\cos(2\beta)\) \(0.87 \pm 0.13\) \(0.722 \pm 0.018\) \(0.66 \pm 0.048\)
\(2\beta+\gamma [^{\circ}]\) \(-89 \pm 54 \text{ and } 90 \pm 54\) \(116.1 \pm 3.1\) \(-\)
\(\gamma [^{\circ}]\) \(-109.9 \pm 7.1 \text{ and } 70.1 \pm 7.1\) \(72.5 \pm 3.1\) \(-\)
\(B(B\rightarrow\tau\nu) 10^{-4}\) \(1.14 \pm 0.22\) \(0.818 \pm 0.065\) \(0.806 \pm 0.07\)
\(B(B_{s}\rightarrow ll)\ 10^{-9}\) \(-\) \(3.52 \pm 0.12\) \(-\)
\(B(B_{d}\rightarrow ll)\ 10^{-9}\) \(-\) \(0.1162 \pm 0.0066\) \(-\)