Standard Model Fit using only inclusive Vxb measurements
The CKM matrix
\[V_{CKM}= \begin{pmatrix}
(0.97426 \pm 0.00014) & (0.22545 \pm 0.00059) & (0.00357 \pm 0.00011)e^{i(-72.6 \pm 3.1)^\circ}\\
( -0.22525 \pm 0.00059)e^{i(0.03476 \pm 0.00096)^\circ} & (0.97342 \pm 0.00013)e^{i(-0.00186 \pm 0.00005)^\circ} & (0.04121 \pm 0.0005) \\
(0.00886 \pm 0.00018)e^{i(-21.93 \pm 0.73)^\circ} & ( -0.04042 \pm 0.0005)e^{i(1.08 \pm 0.033)^\circ} & (0.999142 \pm 0.000018)
\end{pmatrix} \]
Fit results
Predictions are obtained by removing the given constraint from the global fit.
Parameter | Input value | Full fit | SM Prediction |
---|---|---|---|
\(\bar{\rho}\) | \(-\) | \(0.113 \pm 0.021\) | \(-\) |
\(\bar{\eta}\) | \(-\) | \(0.358 \pm 0.021\) | \(-\) |
\(A\) | \(-\) | \(0.811 \pm 0.011\) | \(-\) |
\(\lambda\) | \(0.2253 \pm 0.0009\) | \(0.22535 \pm 0.00065\) | \(-\) |
\(\|V_{ub}\|\) | \(0.00342 \pm 0.00022\) | \(0.00357 \pm 0.00011\) | \(-\) |
\(\|V_{cb}\|\) | \(0.03955 \pm 0.00088\) | \(0.04121 \pm 0.0005\) | \(-\) |
\(\alpha [^{\circ}]\) | \(90.9 \pm 8.0\) | \(85.6 \pm 2.9\) | \(86.3 \pm 3.8\) |
\(\beta [^{\circ}]\) | \(-\) | \(21.91 \pm 0.75\) | \(24.4 \pm 1.8\) |
\(\sin(2\beta)\) | \(0.68 \pm 0.023\) | \(0.693 \pm 0.019\) | \(0.754 \pm 0.042\) |
\(\cos(2\beta)\) | \(0.87 \pm 0.13\) | \(0.722 \pm 0.018\) | \(0.66 \pm 0.048\) |
\(2\beta+\gamma [^{\circ}]\) | \(-89 \pm 54 \text{ and } 90 \pm 54\) | \(116.1 \pm 3.1\) | \(-\) |
\(\gamma [^{\circ}]\) | \(-109.9 \pm 7.1 \text{ and } 70.1 \pm 7.1\) | \(72.5 \pm 3.1\) | \(-\) |
\(B(B\rightarrow\tau\nu) 10^{-4}\) | \(1.14 \pm 0.22\) | \(0.818 \pm 0.065\) | \(0.806 \pm 0.07\) |
\(B(B_{s}\rightarrow ll)\ 10^{-9}\) | \(-\) | \(3.52 \pm 0.12\) | \(-\) |
\(B(B_{d}\rightarrow ll)\ 10^{-9}\) | \(-\) | \(0.1162 \pm 0.0066\) | \(-\) |