Standard Model fit
The CKM matrix
\[V_{CKM}= \begin{pmatrix}
(0.97426 \pm 0.00014) & (0.22535 \pm 0.00059) & (0.00362 \pm 0.00012)e^{i(-70.2 \pm 3.3)^\circ}\\
( -0.22525 \pm 0.00059)e^{i(0.0352 \pm 0.001)^\circ} & (0.97342 \pm 0.00013)e^{i(-0.00188333 \pm 0.00005)^\circ} & (0.04172 \pm 0.00056) \\
(0.00884 \pm 0.00019)e^{i(-22.0 \pm 0.8)^\circ} & ( -0.04092 \pm 0.00057)e^{i(1.071 \pm 0.042)^\circ} & (0.999121 \pm 0.000021)
\end{pmatrix} \]
Fit results
Predictions are obtained by removing the given constraint from the global fit.
Parameter | Input value | Full fit | SM Prediction |
---|---|---|---|
\(\bar{\rho}\) | \(-\) | \(0.127 \pm 0.023\) | \(-\) |
\(\bar{\eta}\) | \(-\) | \(0.353 \pm 0.014\) | \(-\) |
\(\rho\) | \(-\) | \(0.13 \pm 0.024\) | \(-\) |
\(\eta\) | \(-\) | \(0.362 \pm 0.014\) | \(-\) |
\(A\) | \(-\) | \(0.822 \pm 0.012\) | \(-\) |
\(\lambda\) | \(0.2253 \pm 0.0009\) | \(0.22535 \pm 0.00065\) | \(-\) |
\(\|V_{ub}\|\) | \(0.00375 \pm 0.00046\) | \(0.00362 \pm 0.00012\) | \(0.00361 \pm 0.00012\) |
\(\|V_{cb}\|\) | \(0.0409 \pm 0.001\) | \(0.04172 \pm 0.00056\) | \(0.04212 \pm 0.0007\) |
\(\sin\theta_{12}\) | \(-\) | \(0.22535 \pm 0.00059\) | \(-\) |
\(\sin\theta_{23}\) | \(-\) | \(0.04173 \pm 0.00057\) | \(-\) |
\(\sin\theta_{13}\) | \(-\) | \(0.00362 \pm 0.00012\) | \(-\) |
\(\delta [^{\circ}]\) | \(-\) | \(70.3 \pm 3.5\) | \(-\) |
\(m_{b}\mathrm{ [GeV/c^{2}]}\) | \(4.19 \pm 0.04\) | \(-\) | \(-\) |
\(m_{c}\mathrm{ [GeV/c^{2}]}\) | \(1.28 \pm 0.04\) | \(-\) | \(-\) |
\(m_{t}\mathrm{ [GeV/c^{2}]}\) | \(164.1 \pm 0.9\) | \(164.1 \pm 0.9\) | \(161.8 \pm 7.1\) |
\(\Delta m_{s} \mathrm{[ps^{-1}]}\) | \(17.768 \pm 0.024\) | \(17.768 \pm 0.024\) | \(17.4 \pm 1.1\) |
\(\Delta m_{d} \mathrm{[ps^{-1}]}\) | \(0.51 \pm 0.004\) | \(-\) | \(-\) |
\(\Delta m_{K} \mathrm{[ps^{-1}]}\) | \(1.8 \pm 1.8\) | \(-\) | \(-\) |
\(f_{B_{s}}\) | \(0.2277 \pm 0.0045\) | \(0.2272 \pm 0.0039\) | \(0.2266 \pm 0.0075\) |
\(f_{B_{s}}/f_{B_{d}}\) | \(1.202 \pm 0.022\) | \(1.199 \pm 0.021\) | \(1.183 \pm 0.061\) |
\(B_{B_{s}}/B_{B_{d}}\) | \(1.06 \pm 0.11\) | \(1.109 \pm 0.063\) | \(1.136 \pm 0.077\) |
\(B_{B_{s}}\) | \(0.875 \pm 0.04\) | \(0.876 \pm 0.029\) | \(0.876 \pm 0.046\) |
\(B_{k}\) | \(0.766 \pm 0.010\) | \(0.766 \pm 0.011\) | \(0.836 \pm 0.078\) |
\(\alpha [^{\circ}]\) | \(90.9 \pm 8.0\) | \(87.7 \pm 3.3\) | \(86.3 \pm 3.8\) |
\(\beta [^{\circ}]\) | \(-\) | \(22.01 \pm 0.86\) | \(24.4 \pm 1.8\) |
\(\sin(2\beta)\) | \(0.68 \pm 0.023\) | \(0.695 \pm 0.021\) | \(0.754 \pm 0.042\) |
\(\cos(2\beta)\) | \(0.87 \pm 0.13\) | \(0.719 \pm 0.021\) | \(0.66 \pm 0.048\) |
\(2\beta+\gamma [^{\circ}]\) | \(-89 \pm 54 \text{ and } 90 \pm 54\) | \(114.2 \pm 3.4\) | \(114.4 \pm 3.4\) |
\(\gamma [^{\circ}]\) | \(-109.9 \pm 7.1 \text{ and } 70.1 \pm 7.1\) | \(70.3 \pm 3.5\) | \(69.8 \pm 3.9\) |
\(\|\epsilon_{k}\|\) | \(2.228 \pm 0.011\) | \(2.228 \pm 0.039\) | \(2.04 \pm 0.19\) |
\(B(B\rightarrow\tau\nu), 10^{-4}\) | \(1.14 \pm 0.22\) | \(0.834 \pm 0.071\) | \(0.806 \pm 0.07\) |
\(J_{cp}, 10^{-5}\) | \(-\) | \(3.12 \pm 0.09\) | \(-\) |
\(B(B_{s}\rightarrow ll), 10^{-9}\) | \(2.9 \pm 0.7\) | \(3.87 \pm 0.16\) | \(3.91 \pm 0.16\) |
\(B(B_{d}\rightarrow ll), 10^{-9}\) | \(0.37 \pm 0.15\) | \(0.1142 \pm 0.0069\) | \(0.1145 \pm 0.007\) |
\(\Delta\Gamma_{d}/\Gamma_{d}\) | \(-\) | \(0.00516 \pm 0.00037\) | \(-\) |
\(\Delta\Gamma_{s}/\Gamma_{s}\) | \(-\) | \(0.152 \pm 0.013\) | \(-\) |
\(\beta_{s} [^{\circ}]\) | \(-\) | \(1.073 \pm 0.042\) | \(-\) |